

ULTEMTM 9085 production-grade thermoplastic for fortus 3D production systems

ULTEM[™] 9085 resin is a flame-retardant high-performance thermoplastic for digital manufacturing and rapid prototyping. It is ideal for the transportation industry due to its high strength-to-weight ratio and its FST (flame, smoke and toxicity) rating. This unique material's certifications make it an excellent choice for the commercial transportation industry. Combined with a Fortus[®] 3D Production System, ULTEM 9085 resin allows design and manufacturing engineers to produce fully functional parts that are ideal for advanced functional prototypes or end use without the cost or lead time of traditional tooling. For high-quality parts that meet stringent aerospace industry requirements, ULTEM 9085 Aerospace is available.*

MECHANICAL PROPERTIES ¹	TEST METHOD	ENGLISH		METRIC	
MEGNANICAL PROPERTIES	TEST METHOD	XZ ORIENTATION	ZX ORIENTATION	XZ ORIENTATION	ZX ORIENTATION
Tensile Strength, Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	6,800 psi	4,800 psi	47 MPa	33 MPa
Tensile Strength, Ultimate (Type 1, 0.125", 0.2"/min)	ASTM D638	9,950 psi	6,100 psi	69 MPa	42 MPa
Tensile Modulus (Type 1, 0.125", 0.2"/min)	ASTM D638	312,000 psi	329,000 psi	2,150 MPa	2,270 MPa
Tensile Elongation at Break (Type 1, 0.125", 0.2"/min)	ASTM D638	5.8%	2.2%	5.8%	2.2%
Tensile Elongation at Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	2.2%	1.7%	2.2%	1.7%
Flexural Strength (Method 1, 0.05"/min)	ASTM D790	16,200 psi	9,900 psi	112 MPa	68 MPa
Flexural Modulus (Method 1, 0.05"/min)	ASTM D790	331,000 psi	297,000 psi	2,300 MPa	2,050 MPa
Flexural Strain at Break (Method 1, 0.05"/min)	ASTM D790	No break	3.7%	No break	3.7%
IZOD Impact, notched (Method A, 23°C)	ASTM D256	2.2 ft-Ib/in	0.9 ft-Ib/in	120 J/m	48 J/m
IZOD Impact, un-notched (Method A, 23°C)	ASTM D256	14.6 ft-Ib/in	3.2 ft-lb/in	781 J/m	172 J/m
Compressive Strength, Yield (Method 1, 0.05"/min)	ASTM D695	14,500 psi	12,700 psi	100 MPa	87 MPa
Compressive Strength, Ultimate (Method 1, 0.05"/min)	ASTM D695	26,200 psi	13,100 psi	181 MPa	90 MPa
Compressive Modulus (Method 1, 0.05"/min)	ASTM D695	1,030,000 psi	251,000 psi	7,012 MPa	1,731 MPa

THERMAL PROPERTIES ²	TEST METHOD	ENGLISH	METRIC
Heat Deflection (HDT) @ 264 psi, 0.125" unannealed	ASTM D648	307°F	153°C
Glass Transition Temperature (Tg)	DSC (SSYS)	367°F	186°C
Coefficient of Thermal Expansion	ASTM E831	3.67x10 ⁻⁰⁵ in/(in·°F)	65.27 µm/(m·°C)
Melting Point		Not Applicable ³	Not Applicable ³

*ULTEM 9085 Aerospace grade filaments are canisters of ULTEM 9085 filament produced in accordance with specifications that meet the requirements of the aerospace industry.

STRATASYS.COM

ULTEMTM 9085 PRODUCTION-GRADE THERMOPLASTIC FOR FORTUS 3D PRODUCTION SYSTEMS

At the core: Advanced FDM Technology

Fortus systems are based on FDM[®] (fused deposition modeling) technology. FDM is the industry's leading additive manufacturing technology, and the only one that uses production-grade thermoplastics, enabling the most durable parts.

Fortus systems use a wide range of thermoplastics with advanced mechanical properties so your parts can endure high heat, caustic chemicals, sterilization and highimpact applications.

No special facilities needed

You can install a Fortus 3D Production System just about anywhere. No special venting is required because Fortus systems don't produce noxious fumes, chemicals or waste.

No special skills needed

Fortus 3D Production Systems are easy to operate and maintain compared to other additive fabrication systems because there are no messy powders to handle and contain. They're so simple, an operator can be trained to operate a Fortus system in less than 30 minutes.

Get your benchmark on the future of manufacturing

Fine details. Smooth surface finishes. Accuracy. Strength. The best way to see the advantages of a Fortus 3D Production System is to have your own part built on a Fortus system. Get your free part at: stratasys.com.

ELECTRICAL PROPERTIES	TEST METHOD	VALUE RANGE
Volume Resistivity	ASTM D257	4.9 x10 ¹⁵ - 8.2x10 ¹⁵ ohm-cm
Dielectric Constant	ASTM D150-98	3 - 3.2
Dissipation Factor	ASTM D150-98	.00260027
Dielectric Strength	ASTM D149-09, Method A	110 - 290 V/mil

OTHER ²	TEST METHOD	VALUE
Specific Gravity	ASTM D792	1.34
Rockwell Hardness	ASTM D785	
Flame Classification	UL94	V-0 (1.5 mm, 3 mm)
Oxygen Index	ASTM D2863	0.49
OSU Total Heat Release (2 min test, . 060" thick)	FAR 25.853	16 kW min/m ²
UL File Number		E345258
Outgassing		
Total Mass Loss (TML)	ASTM E595	0.41% (1.00% maximum)
Collected Volatile Condensable Material (CVCM)	ASTM E595	-0.1% (0.10% maximum)
Water Vapor Recovered (WVR)	ASTM E595	-0.37% (report)
Fungus Resistance (Method 508.6)	MIL-STD-810G	Passed
Burn Testing		
Horizontal Burn (15 sec)	14 CFR/FAR 25.853	Passed (0.060" thick)
Vertical Burn (60 sec)	14 CFR/FAR 25.853	Passed (0.060" thick)
Vertical Burn (12 sec)	14 CFR/FAR 25.853	Passed (0.060" thick)
45° Ignition	14 CFR/FAR 25.853	Passed (0.060" thick)
Heat Release	14 CFR/FAR 25.853	Passed (0.060" thick)
NBS Smoke Density (flaming)	ASTM F814/E662	Passed (0.060" thick)
NBS Smoke Density (non-flaming)	ASTM F814/E662	Passed (0.060" thick)

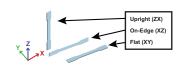
SYSTEM	LAYER THICKNESS	SUPPORT	AVAILABLE
AVAILABILITY	CAPABILITY	STRUCTURE	COLORS
Fortus 400mc™	0.013 inch (0.330 mm)	Breakaway	Tan (Natural)
Fortus 450mc™	0.010 inch (0.254 mm)		Black
Fortus 900mc™			

The performance characteristics of these materials may vary according to application, operating conditions, or end use. Each user is responsible for determining that the Stratasys material is safe, lawful, and technically suitable for the intended application, as well as for identifying the proper disposal (or recycling) method consistent with applicable environmental laws and regulations. Stratasys makes no warranties of any kind, express or implied, including, but not limited to, the warranties of merchantability, fitness for a particular use, or warranty against patent infringement.

The information presented in this document are typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. End-use material performance can be impacted (+/-) by, but not limited to, part design, end-use conditions, test conditions, color, etc. Actual values will vary with build conditions. Tested parts were built on Fortus 400mc @ 0.010" (0.254 mm) slice. Product specifications are subject to change without notice.

¹Build orientation is on side long edge.

²Literature value unless otherwise noted.


³Due to amorphous nature, material does not display a melting point.

⁴All Electrical Property values were generated from the average of test plaques built with default part density (solid). Test plaques were $4.0 \times 4.0 \times 0.1$ inches ($102 \times 102 \times 2.5$ mm) and were built both in the flat and vertical orientation. The range of values is mostly the result of the difference in properties of test plaques built in the flat vs. vertical orientation.

XZ = X or "on edge"

XY = Y or "flat"

ZX = or "upright"

E info@stratasys.com / STRATASYS.COM

ISO 9001:2008 Certified

HEADQUARTERS

7665 Commerce Way, Eden Prairie, MN 55344

+1 888 480-3548 (US Toll Free)

- +1 952 937-3000 (Intl)
- +1 952 937-0070 (Fax)

2 Holtzman St., Science Park, PO Box 2496 Rehovot 76124, Israel +972 74 745-4000 +972 74 745-5000 (Fax)

62015, 2016 Stratasys Inc. All rights reserved. Stratasys, FDM, Fortus and Finishing Touch are registered trademarks of Stratasys Inc. FDM Technology, Fused Deposition Modeling, Fortus 250mc, Fortus 360mc, Fortus 400mc, Fortus 400mc, Fortus 900mc, Insight, Control Center, FDM Team, Smart Supports, SR-30, SR-100, ABSplus, ABS-ESD7, and TouchWorks are trademarks of Stratasys. Inc. ULTEM is a trademark of SABIC Innovative Plastics IP BV. All other trademarks are the property of their respective owners, and Stratasys assumes no responsibility with regard to the selection, performance, or use of these non-Stratasys products. Product specifications subject to change without notice. Printed in the USA. MSS_FDM_ULTEM9085_0416a